Development of PZT and PZN-PT Based Unimorph Actuators for Micromechanical Flapping Mechanisms

نویسندگان

  • Metin Sitti
  • Domenico Campolo
  • Joseph Yan
  • Ronald S. Fearing
  • Tao Su
  • David Taylor
  • Timothy D. Sands
چکیده

This paper focuses on the design, fabrication and characterization of unimorph actuators for a microaerial flapping mechanism. PZT-5H and PZN-PT are investigated as piezoelectric layers in the unimorph actuators. Design issues for microaerial flapping actuators are discussed, and criteria for the optimal dimensions of actuators are determined. For low power consumption actuation, a square wave based electronic driving circuit is proposed. Fabricated piezoelectric unimorphs are characterized by an optical measurement system in quasi-static and dynamic mode. Experimental performance of PZT5H and PZN-PT based unimorphs is compared with desired design specifications. A 1 d.o.f. flapping mechanism with a PZT-5H unimorph is constructed, and 180◦ stroke motion at 95 Hz is achieved. Thus, it is shown that unimorphs could be promising flapping mechanism actuators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piezoelectrically Actuated Four-Bar Mechanism with Two Flexible Links for Micromechanical Flying Insect Thorax

In this paper, a piezoelectrically actuated four-bar mechanism with two flexible links is proposed to be used in a micromechanical flying insect robot wing thorax for stroke amplification. PZT-5H and PZN-PT based unimorph actuators are utilized at the input link of the four-bar for a compact and light weight thorax transmission mechanism. The kinematics and dynamics of the proposed wing structu...

متن کامل

PZT Actuated Four-Bar Mechanism with Two Flexible Links for Micromechanical Flying Insect Thorax

In this paper, a four-bar mechanism with two flexible links is proposed to be used in a micromechanical flying insect robot wing thorax design for stroke amplification. PZT5H and PZN-PT based unimorph actuators are utilized at the input link of the four-bar. The kinematics and dynamics of the proposed wing strcuture with two parallel four-bar mechanisms are analyzed, and DC forces generated at ...

متن کامل

Towards flapping Wing Control for a Micromechanical Flying Insect

A 2 DOF resonant thorax structure has been designed and fabricated for the MFI project. Miniature piezoelectric PZN-PT unimorph actuators were fabricated and used to drive a four-bar transmission mechanism. The current thorax design utilizes two actuated four-bars and a spherical joint to drive a rigid wing. Rotationally compliant flexure joints have been tested with lifetimes over 10 cycles. W...

متن کامل

Development of piezoelectric bending actuators with embedded piezoelectric sensors for micromechanical flapping mechanisms

This paper presents the fabrication and the testing of piezoelectric unimorph actuators with embedded piezoelectric sensors which are meant to be used for the actuation of the Micromechanical Flying Insect (MFI). First the fabrication process of a piezoelectric bending actuator comprising a standard unimorph and a rigid extension is described together with the advantages of adding such an exten...

متن کامل

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001